Alternative Derivation of the Non-Abelian Stokes Theorem in Two Dimensions

Author:

Ariwahjoedi Seramika12ORCID,Zen Freddy Permana34

Affiliation:

1. Asia Pacific Center for Theoretical Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea

2. Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia

3. Theoretical Physics Laboratory, THEPi Division, Department of Physics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia

4. Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Department of Physics, Jl. Ganesha 10, Bandung 40132, Indonesia

Abstract

The relation between the holonomy along a loop with the curvature form is a well-known fact, where the small square loop approximation of aholonomy Hγ,O is proportional to Rσ. In an attempt to generalize the relation for arbitrary loops, we encounter the following ambiguity. For a given loop γ embedded in a manifold M, Hγ,O is an element of a Lie group G; the curvature Rσ∈g is an element of the Lie algebra of G. However, it turns out that the curvature form Rσ obtained from the small loop approximation is ambiguous, as the information of γ and Hγ,O are insufficient for determining a specific plane σ responsible for Rσ. To resolve this ambiguity, it is necessary to specify the surface S enclosed by the loop γ; hence, σ is defined as the limit of S when γ shrinks to a point. In this article, we try to understand this problem more clearly. As a result, we obtain an exact relation between the holonomy along a loop with the integral of the curvature form over a surface that it encloses. The derivation of this result can be viewed as an alternative proof of the non-Abelian Stokes theorem in two dimensions with some generalizations.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference17 articles.

1. Sur une classe remarquable d’espaces de Riemann;Cartan;Bull. Soc. Math.,1926

2. Sur une classe remarquable d’espaces de Riemann. II;Cartan;Bull. Soc. Math.,1927

3. Sur les groupes d’holonomie homogènes de variétès à conexion affine et des variétès riemanniennes;Berger;Bull. Soc. Math.,1955

4. Theorem on holonomy;Ambrose;Trans. Am. Math. Soc.,1953

5. Non-Abelian Stokes formula;Theor. Math. Phys.,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3