Scheduling of Multi-AGV Systems in Automated Electricity Meter Verification Workshops Based on an Improved Snake Optimization Algorithm

Author:

Shi Kun1ORCID,Zhang Miaohan1,He Zhaolei2,Yin Shi1,Ai Zhen3,Pan Nan1ORCID

Affiliation:

1. Faculty of Civil Aviation and Aeronautical, Kunming University of Science and Technology, Kunming 650500, China

2. Metering Center, Yunnan Power Grid Co., Ltd., Kunming 650200, China

3. NARI Nanjing Control System Co., Ltd., Nanjing 211100, China

Abstract

Automated guided vehicles (AGVs) are one of the core technologies for building unmanned autonomous integrated automated electric meter verification workshops in metrology centers. However, complex obstacles on the verification lines, frequent AGV charging, and multi-AGV collaboration make the scheduling problem more complicated. Aiming at the characteristics and constraints of AGV transportation scheduling for metrology verification, a multi-AGV scheduling model was established to minimize the maximum completion time and charging cost, integrating collision-avoidance constraints. An improved snake optimization algorithm was proposed that first assigns and sorts tasks based on AGV-order-address three-level mapping encoding and decoding, then searches optimal paths using an improved A* algorithm solves multi-AGV path conflicts, and finally finds the minimum-charging-cost schedule through large neighborhood search. We conducted simulations using real data, and the calculated results reduced the objective function value by 16.4% compared to the traditional first-in-first-out (FIFO) method. It also reduced the number of charges by 60.3%. In addition, the proposed algorithm is compared with a variety of cutting-edge algorithms and the results show that the objective function value is reduced by 8.7–11.2%, which verifies the superiority of the proposed algorithm and the feasibility of the model.

Funder

China Southern Power Grid

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3