A Novel Lightweight Object Detection Network with Attention Modules and Hierarchical Feature Pyramid

Author:

Yang Shengying12ORCID,Chen Linfeng2,Wang Junxia2,Jin Wuyin1,Yu Yunxiang3

Affiliation:

1. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

3. Zhejiang Dingli Industry Co., Ltd., Lishui 321400, China

Abstract

Object detection methods based on deep learning typically require devices with ample computing capabilities, which limits their deployment in restricted environments such as those with embedded devices. To address this challenge, we propose Mini-YOLOv4, a lightweight real-time object detection network that achieves an excellent trade-off between speed and accuracy. Based on CSPDarknet-Tiny as the backbone network, we enhance the detection performance of the network in three ways. We use a multibranch structure embedded in an attention module for simultaneous spatial and channel attention calibration. We design a group self-attention block with a symmetric structure consisting of a pair of complementary self-attention modules to mine contextual information, thereby ensuring that the detection accuracy is improved without increasing the computational cost. Finally, we introduce a hierarchical feature pyramid network to fully exploit multiscale feature maps and promote the extraction of fine-grained features. The experimental results demonstrate that Mini-YOLOv4 requires only 4.7 M parameters and has a billion floating point operations (BFLOPs) value of 3.1. Compared with YOLOv4-Tiny, our approach achieves a 3.2% improvement in mean accuracy precision (mAP) for the PASCAL VOC dataset and obtains a significant improvement of 3.5% in overall detection accuracy for the MS COCO dataset. In testing with an embedded platform, Mini-YOLOv4 achieves a real-time detection speed of 25.6 FPS on the NVIDIA Jetson Nano, thus meeting the demand for real-time detection in computationally limited devices.

Funder

National Natural Science Foundation of China

Scientific Research Fund of Zhejiang Provincial Education Department

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3