Application of Diversity-Maintaining Adaptive Rafflesia Optimization Algorithm to Engineering Optimisation Problems

Author:

Pan Jeng-Shyang12ORCID,Zhang Zhen1,Chu Shu-Chuan1ORCID,Lee Zne-Jung3,Li Wei4ORCID

Affiliation:

1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Department of Information Management, Chaoyang University of Technology, Taichung 41349, Taiwan

3. School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China

4. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

Abstract

The Diversity-Maintained Adaptive Rafflesia Optimization Algorithm represents an enhanced version of the original Rafflesia Optimization Algorithm. The latter draws inspiration from the unique characteristics displayed by the Rafflesia during its growth, simulating the entire lifecycle from blooming to seed dispersion. The incorporation of the Adaptive Weight Adjustment Strategy and the Diversity Maintenance Strategy assists the algorithm in averting premature convergence to local optima, subsequently bolstering its global search capabilities. When tested on the CEC2013 benchmark functions under a dimension of 30, the new algorithm was compared with ten optimization algorithms, including commonly used classical algorithms, such as PSO, DE, CSO, SCA, and the newly introduced ROA. Evaluation metrics included mean and variance, and the new algorithm outperformed on a majority of the test functions. Concurrently, the new algorithm was applied to six real-world engineering problems: tensile/compressive spring design, pressure vessel design, three-bar truss design, welded beam design, reducer design, and gear system design. In these comparative optimizations against other mainstream algorithms, the objective function’s mean value optimized by the new algorithm consistently surpassed that of other algorithms across all six engineering challenges. Such experimental outcomes validate the efficiency and reliability of the Diversity-Maintained Adaptive Rafflesia Optimization Algorithm in tackling optimization challenges. The Diversity- Maintained Adaptive Rafflesia Optimization Algorithm is capable of tuning the parameter values for the optimization of symmetry and asymmetry functions. As part of our future research endeavors, we aim to deploy this algorithm on an even broader array of diverse and distinct optimization problems, such as the arrangement of wireless sensor nodes, further solidifying its widespread applicability and efficacy.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3