A Mixed Finite Element Approximation for Time-Dependent Navier–Stokes Equations with a General Boundary Condition

Author:

El Moutea Omar1ORCID,Nakbi Nadia2,El Akkad Abdeslam23,Elkhalfi Ahmed3ORCID,El Ouadefli Lahcen3ORCID,Vlase Sorin45ORCID,Scutaru Maria Luminita4

Affiliation:

1. Laboratory of Mathematics and Applications-ENS, Hassan II University, Casablanca 20000, Morocco

2. Département de Mathématiques, Centre Regional des Métiers d’Education et de Formation de Fès Meknès (CRMEF Fès-Meknès), Rue de Koweit 49, Ville Nouvelle, Fez 30050, Morocco

3. Mechanical Engineering Laboratory, Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Route Imouzzer, Fez 30000, Morocco

4. Department of Mechanical Engineering, Faculty of Mechanical Engineering, Transylvania University of Brasov, B-dul Eroilor 29, 500036 Brasov, Romania

5. Romanian Academy of Technical Sciences, B-dul Dacia 26, 030167 Bucharest, Romania

Abstract

In this paper, we present a numerical scheme for addressing the unsteady asymmetric flows governed by the incompressible Navier–Stokes equations under a general boundary condition. We utilized the Finite Element Method (FEM) for spatial discretization and the fully implicit Euler scheme for time discretization. In addition to the theoretical analysis of the error in our numerical scheme, we introduced two types of a posteriori error indicators: one for time discretization and another for spatial discretization, aimed at effectively controlling the error. We established the equivalence between these estimators and the actual error. Furthermore, we conducted numerical simulations in two dimensions to assess the accuracy and effectiveness of our scheme.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. Physics-informed deep learning for incompressible laminar flows;Rao;Theor. Appl. Mech. Lett.,2020

2. Muldoon, F.H. (2004). Numerical Methods for the Unsteady Incompressible Navier-Stokes Equations and Their Application to the Direct Numerical Simulation of Turbulent Flows, Louisiana State University and Agricultural & Mechanical College.

3. A study of the time constant in unsteady porous media flow using direct numerical simulation;Zhu;Transp. Porous Media,2014

4. An unsteady incompressible Navier–Stokes solver for large eddy simulation of turbulent flows;Kim;Int. J. Numer. Methods Fluids,1999

5. Comprehensive comparison between the lattice Boltzmann and Navier–Stokes methods for aerodynamic and aeroacoustic applications;Suss;Comput. Fluids,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3