A High-Performance System for Weak ECG Real-Time Detection

Author:

Xu Kun12,Yang Yi1,Li Yu12,Zhang Yahui12,Zhang Limin12ORCID

Affiliation:

1. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China

2. The Life and Health Industry Research Institute of Nanjing University, Zhenjiang 212000, China

Abstract

Wearable devices have been widely used for the home monitoring of physical activities and healthcare conditions, among which ambulatory electrocardiogram (ECG) stands out for the diagnostic cardiovascular information it contains. Continuous and unobtrusive sensing often requires the integration of wearable sensors to existing devices such as watches, armband, headphones, etc.; nonetheless, it is difficult to detect high-quality ECG due to the nature of low signal amplitude at these areas. In this paper, a high-performance system with multi-channel signal superposition for weak ECG real-time detection is proposed. Firstly, theoretical analysis and simulation is performed to demonstrate the effectiveness of this system design. The detection system, including electrode array, acquisition board, and the application (APP), is then developed and the electrical characteristics are measured. A common mode rejection ratio (CMRR) of up to 100 dB and input inferred voltage noise below 1 μV are realized. Finally, the technique is implemented in form of ear-worn and armband devices, achieving an SNR over 20 dB. Results are also compared with the simultaneous recording of standard lead I ECG. The correlation between the heart rates derived from experimental and standard signals is higher than 0.99, showing the feasibility of the proposed technique.

Funder

National Nature Science Foundation Program of China

Open Foundation of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province

Publisher

MDPI AG

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3