Affiliation:
1. Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
2. Beijing Flower Engineering Technology Research Center, Plant Institute, China National Botanical Garden North Park, Beijing 100093, China
Abstract
The flower induction of Hydrangea macrophylla “Endless Summer” is regulated by a complex gene network that involves multiple signaling pathways to ensure continuous flowering throughout the growing season, but the molecular determinants of flower induction are not yet clear. In this study, genes potentially involved in signaling pathway mediating the regulatory mechanism of flower induction were identified through the transcriptomic profiles, and a hypothetical model for this regulatory mechanism was obtained by an analysis of the available transcriptomic data, suggesting that sugar-, hormone-, and flowering-related genes participated in the flower induction process of H. macrophylla “Endless Summer”. The expression profiles of the genes involved in the biosynthesis and metabolism of sugar showed that the beta-amylase gene BAM1 displayed a high expression level at the BS2 stage and implied the hydrolysis of starch. It may be a signaling molecule that promotes the transition from vegetative growth to reproductive growth in H. macrophylla “Endless Summer”. Complex hormone regulatory networks involved in abscisic acid (ABA), auxin (IAA), zeatin nucleoside (ZR), and gibberellin (GA) also induced flower formation in H. macrophylla. ABA participated in flower induction by regulating flowering genes. The high content of IAA and the high expression level of the auxin influx carrier gene LAX5 at the BS2 stage suggested that the flow of auxin between sources and sinks in H. macrophylla is involved in the regulation of floral induction as a signal. In addition, flowering-related genes were mainly involved in the photoperiodic pathway, the aging pathway, and the gibberellin pathway. As a result, multiple pathways, including the photoperiodic pathway, the aging pathway, and the gibberellin pathway, which were mainly mediated by crosstalk between sugar and hormone signals, regulated the molecular network involved in flower induction in H. macrophylla “Endless Summer”.
Funder
Beijing Municipal Park Management Center
China’s National Natural Science Foundation
National Key R&D Program of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference57 articles.
1. Advances on molecular mechanism of floral initiation in higher plants;Zhou;Mol. Plant Breed.,2018
2. Recent research progress on the molecular regulation of flowering time in Arabidopsis thaliana;Shu;Plant Sci. J.,2017
3. Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.);Xing;Plant Cell Physiol.,2015
4. Timing of photoperiodic flowering: Light perception and circadian clock;Zhou;J. Integr. Plant Biol.,2007
5. Rawat, R., Takahashi, N., Hsu, P.Y., Jones, M.A., Schwartz, J., Salemi, M.R., Phinney, B.S., and Harmer, S.L. (2011). REVEILLE8 and PSEUDO-REPONSE REGULATOR5 Form a Negative Feedback Loop within the Arabidopsis Circadian Clock. PloS Genet., 7.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献