Silencing a Chitinase Gene, PstChia1, Reduces Virulence of Puccinia striiformis f. sp. tritici

Author:

Guo Jia1,Mou Ying1,Li Yuanxing1,Yang Qing1,Wang Xue1,Lin Haocheng1,Kang Zhensheng1ORCID,Guo Jun1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China

Abstract

Chitin is the main component of fungal cell walls, which can be recognized by pattern recognition receptors (PRRs) as pathogen-associated molecular patterns (PAMP). Chitinase in filamentous fungi has been reported to degrade immunogenic chitin oligomers, thereby preventing chitin-induced immune activation. In this study, we identified the chitinase families in 10 fungal genomes. A total of 131 chitinase genes were identified. Among the chitinase families, 16 chitinase genes from Puccinia striiformis f. sp. tritici (Pst) were identified, and the expression of PstChia1 was the highest during Pst infection. Further studies indicated that PstChia1 is highly induced during the early stages of the interaction of wheat and Pst and has chitinase enzyme activity. The silencing of PstChia1 revealed that PstChia1 limited the growth and reduced the virulence of Pst. The expression level of TaPR1 and TaPR2 was induced in PstChia1 knockdown plants, suggesting that PstChia1 is involved in regulating wheat resistance to Pst. Our data suggest that PstChia1 contributes to pathogenicity by interfering with plant immunity and regulating the growth of Pst.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Innovation Capability Support Program of Shaanxi

Key Research and Development Program of Shaanxi

Natural Science Basic Research Program of Shaanxi

Ministry of Education of China

National Undergraduate Training Program for Innovation and Entrepreneurship

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3