PAPP-A-Specific IGFBP-4 Proteolysis in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

Author:

Adasheva Daria A.1,Lebedeva Olga S.2ORCID,Goliusova Daria V.2ORCID,Postnikov Alexander B.3,Teriakova Maria V.2,Kopylova Irina V.2,Lagarkova Maria A.2ORCID,Katrukha Alexey G.13,Serebryanaya Daria V.1

Affiliation:

1. Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia

2. Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia

3. Hytest Ltd., 20520 Turku, Finland

Abstract

The insulin-like growth factors IGF-I and IGF-II—as well as their binding proteins (IGFBPs), which regulate their bioavailability—are involved in many pathological and physiological processes in cardiac tissue. Pregnancy-associated plasma protein A (PAPP-A) is a metalloprotease that preferentially cleaves IGFBP-4, releasing IGF and activating its biological activity. Previous studies have shown that PAPP-A-specific IGFBP-4 proteolysis is involved in the pathogenesis of cardiovascular diseases, such as ischemia, heart failure, and acute coronary syndrome. However, it remains unclear whether PAPP-A-specific IGFBP-4 proteolysis participates in human normal cardiomyocytes. Here, we report PAPP-A-specific IGFBP-4 proteolysis occurring in human cardiomyocytes derived from two independent induced pluripotent cell lines (hiPSC-CMs), detected both on the cell surface and in the cell secretome. PAPP-A was measured by fluoroimmune analysis (FIA) in a conditioned medium of hiPSC-CMs and was detected in concentrations of up to 4.3 ± 1.33 ng/mL and 3.8 ± 1.1 ng/mL. The level of PAPP-A-specific IGFBP-4 proteolysis was determined as the concentration of NT-IGFBP-4 proteolytic fragments using FIA for a proteolytic neo-epitope-specific assay. We showed that PAPP-A-specific IGFBP-4 proteolysis is IGF-dependent and inhibited by EDTA and 1,10-phenanthroline. Therefore, it may be concluded that PAPP-A-specific IGFBP-4 proteolysis functions in human normal cardiomyocytes, and hiPSC-CMs contain membrane-bound and secreted forms of proteolytically active PAPP-A.

Funder

State Foundation

RFBR

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Specific cleavage of IGFBP-4 by papp-a in nervous tissue;Biochemical and Biophysical Research Communications;2024-11

2. IGF Signaling in the Heart in Health and Disease;Biochemistry (Moscow);2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3