Rational Design of Daunorubicin C-14 Hydroxylase Based on the Understanding of Its Substrate-Binding Mechanism

Author:

Zhang Jing12ORCID,Gao Ling-Xiao1,Chen Wei1ORCID,Zhong Jian-Jiang3ORCID,Qian Chao4,Zhou Wen-Wen1ORCID

Affiliation:

1. College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China

2. School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia

3. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

4. College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China

Abstract

Doxorubicin is one of the most widely used antitumor drugs and is currently produced via the chemical conversion method, which suffers from high production costs, complex product separation processes, and serious environmental pollution. Biocatalysis is considered a more efficient and environment-friendly method for drug production. The cytochrome daunorubicin C-14 hydroxylase (DoxA) is the essential enzyme catalyzing the conversion of daunorubicin to doxorubicin. Herein, the DoxA from Streptomyces peucetius subsp. caesius ATCC 27952 was expressed in Escherichia coli, and the rational design strategy was further applied to improve the enzyme activity. Eight amino acid residues were identified as the key sites via molecular docking. Using a constructed screening library, we obtained the mutant DoxA(P88Y) with a more rational protein conformation, and a 56% increase in bioconversion efficiency was achieved by the mutant compared to the wild-type DoxA. Molecular dynamics simulation was applied to understand the relationship between the enzyme’s structural property and its substrate-binding efficiency. It was demonstrated that the mutant DoxA(P88Y) formed a new hydrophobic interaction with the substrate daunorubicin, which might have enhanced the binding stability and thus improved the catalytic activity. Our work lays a foundation for further exploration of DoxA and facilitates the industrial process of bio-production of doxorubicin.

Funder

National Key R & D Program of China

Open Funding Project of the State Key Laboratory of Microbial Metabolism

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3