Anti-Cancer Effects of Artesunate in Human 3D Tumor Models of Different Complexity

Author:

Niederreiter Marlene1,Klein Julia1,Arndt Kerstin1,Werner Jens12,Mayer Barbara123

Affiliation:

1. Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistraße 15, 81377 Munich, Germany

2. German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany

3. SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany

Abstract

The anti-malaria drug Artesunate (ART) shows strong anti-cancer effects in vitro; however, it shows only marginal treatment results in clinical cancer studies. In this study, ART was tested in preclinical 3D cancer models of increasing complexity using clinically relevant peak plasma concentrations to obtain further information for translation into clinical use. ART reduced cell viability in HCT-116 and HT-29 derived cancer spheroids (p < 0.001). HCT-116 spheroids responded dose-dependently, while HT-29 spheroids were affected more strongly by ART than by cytostatics (p < 0.001). HCT-116 spheroids were chemo-sensitized by ART (p < 0.001). In patient-derived cancer spheroids (PDCS), ART led to inhibition of cell viability in 84.62% of the 39 samples tested, with a mean inhibitory effect of 13.87%. Viability reduction of ART was 2-fold weaker than cytostatic monotherapies (p = 0.028). Meanwhile, tumor-stimulation of up to 16.30% was observed in six (15.38%) PDCS-models. In 15 PDCS samples, ART modulated chemotherapies in combined testing, eight of which showed chemo-stimulation (maximum of 36.90%) and seven chemo-inhibition (up to 16.95%). These results demonstrate that ART’s anti-cancer efficacy depends on the complexity of the tumor model used. This emphasizes that cancer treatment with ART should be evaluated before treatment of the individual patient to ensure its benefits and prevent unwanted effects.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3