Na+ Lattice Doping Induces Oxygen Vacancies to Achieve High Capacity and Mitigate Voltage Decay of Li-Rich Cathodes

Author:

Qiu Hengrui1,Zhang Rui1,Zhang Youxiang1

Affiliation:

1. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

Abstract

In this work, we synthesized 1D hollow square rod-shaped MnO2, and then obtained Na+ lattice doped-oxygen vacancy lithium-rich layered oxide by a simple molten salt template strategy. Different from the traditional synthesis method, the hollow square rod-shaped MnO2 in NaCl molten salt provides numerous anchor points for Li, Co, and Ni ions to directly prepare Li1.2Ni0.13Co0.13Mn0.54O2 on the original morphology. Meanwhile, Na+ is also introduced for lattice doping and induces the formation of oxygen vacancy. Therefrom, the modulated sample not only inherits the 1D rod-like morphology but also achieves Na+ lattice doping and oxygen vacancy endowment, which facilitates Li+ diffusion and improves the structural stability of the material. To this end, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, and other characterization are used for analysis. In addition, density functional theory is used to further analyze the influence of oxygen vacancy generation on local transition metal ions, and theoretically explain the mechanism of the electrochemical performance of the samples. Therefore, the modulated sample has a high discharge capacity of 282 mAh g−1 and a high capacity retention of 90.02% after 150 cycles. At the same time, the voltage decay per cycle is only 0.0028 V, which is much lower than that of the material (0.0038 V per cycle) prepared without this strategy. In summary, a simple synthesis strategy is proposed, which can realize the morphology control of Li1.2Ni0.13Co0.13Mn0.54O2, doping of Na+ lattice, and inducing the formation of oxygen vacancy, providing a feasible idea for related exploration.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3