Small RNA MTS1338 Configures a Stress Resistance Signature in Mycobacterium tuberculosis

Author:

Martini Billy A.1,Grigorov Artem S.2,Skvortsova Yulia V.2,Bychenko Oksana S.2,Salina Elena G.1ORCID,Azhikina Tatyana L.2ORCID

Affiliation:

1. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia

2. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia

Abstract

In the course of evolution, Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, has developed sophisticated strategies to evade host immune response, including the synthesis of small non-coding RNAs (sRNAs), which regulate post-transcriptional pathways involved in the stress adaptation of mycobacteria. sRNA MTS1338 is upregulated in Mtb during its infection of cultured macrophages and in the model of chronic tuberculosis, suggesting involvement in host–pathogen interactions. Here, we analyzed the role of MTS1338 in the Mtb response to macrophage-like stresses in vitro. The Mtb strain overexpressing MTS1338 demonstrated enhanced survival ability under low pH, nitrosative, and oxidative stress conditions simulating the antimicrobial environment inside macrophages. Transcriptomic analysis revealed that in MTS1338-overexpressing Mtb, the stress factors led to the activation of a number of transcriptional regulators, toxin–antitoxin modules, and stress chaperones, about half of which coincided with the genes induced in Mtb phagocytosed by macrophages. We determined the MTS1338 “core regulon”, consisting of 11 genes that were activated in all conditions under MTS1338 overexpression. Our findings indicate that MTS1338 is a stress-induced sRNA that promotes Mtb survival in macrophages by triggering adaptive transcriptional mechanisms in response to host antimicrobial defense reactions.

Funder

Russian Science Foundation

Russian Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3