Affiliation:
1. Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2. National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Abstract
Herein, a series of novel sulfur-containing functionalized disiloxanes based on a low-cost and commercially available material, i.e., 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane, and various thiol compounds were prepared by thiol–epoxy click reaction. It was found that both lithium hydroxide (LiOH) and tetrabutylammonium fluoride (TBAF) have high catalytic activity after optimizing the reaction condition, and the reaction can be carried out with high yields, excellent regioselectivity, mild reaction condition, and good tolerance of functional groups. These compounds exhibit excellent nonconventional fluorescence due to the formation of coordination bonds between Si atoms and heteroatoms (e.g., S or N) and can emit blue fluorescence upon ultraviolet (UV) irradiation. These results demonstrate that the thiol–epoxy click reaction could promisingly act as an efficient organosilicon synthetic methodology to construct various organosilicon materials with novel structures and functionality, and thus their application scope will be significantly expanded.
Funder
National Natural Science Foundation of China
Fluorine Silicone Materials Collaborative Fund of Shandong Provincial Natural Science Foundation
Basic Research Foundation of Institute of Silicon-Based High-End New Materials
Young Scholars Program of Shandong University
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献