Functional Characterization of Allelic Variations of Human Cytochrome P450 2C8 (V181I, I244V, I331T, and L361F)

Author:

Lee Yoo-Bin1ORCID,Kim Vitchan1,Lee Sung-Gyu1,Lee Gyu-Hyeong1,Kim Changmin1,Jeong Eunseo1,Kim Donghak1ORCID

Affiliation:

1. Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea

Abstract

The human cytochrome P450 2C8 is responsible for the metabolism of various clinical drugs as well as endogenous fatty acids. Allelic variations can significantly influence the metabolic outcomes. In this study, we characterize the functional effects of four nonsynonymous single nucleotide polymorphisms *15, *16, *17, and *18 alleles recently identified in cytochrome P450 2C8. The recombinant allelic variant enzymes V181I, I244V, I331T, and L361F were successfully expressed in Escherichia coli and purified. The steady-state kinetic analysis of paclitaxel 6-hydroxylation revealed a significant reduction in the catalytic activities of the V181I, I244V, and L361F variants. The calculated catalytic efficiency (kcat/Km) of these variants was 5–26% of that of the wild-type enzyme. The reduced activities were due to both decreased kcat values and increased Km values of the variants. The epoxidation of arachidonic acid by the variants was analyzed. The L361F variant only exhibited 4–6% of the wild-type catalytic efficiency in ω-9- and ω-6-epoxidation reactions to produce 11,12-epoxyeicosatrienoic acid (EET) and 14,15-EET, respectively. These reductions were mainly due to a decrease in the kcat value of the L361F variant. The binding titration analysis of paclitaxel and arachidonic acid showed that all variants had similar affinities to those of the wild-type (10–14 μM for paclitaxel and 20–49 μM for arachidonic acid). The constructed paclitaxel docking model of the variant enzyme suggests that the L361F substitution leads to the incorrect orientation of paclitaxel in the active site, with the 6′C of paclitaxel displaced from the productive catalytic location. This study suggests that individuals carrying the newly identified P450 2C8 allelic variations are likely to have an altered metabolism of clinical medicines and production of fatty acid-derived signal molecules.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3