Combined Supplementation of Clostridium butyricum and Bifidobacterium infantis Diminishes Chronic Unpredictable Mild Stress-Induced Intestinal Alterations via Activation of Nrf-2 Signaling Pathway in Rats

Author:

Fatima Sabiha1ORCID,Altwaijry Haifa1,Abulmeaty Mahmoud M. A.2ORCID,Abudawood Manal3ORCID,Siddiqi Nikhat J.4,Alrashoudi Reem Hamoud1,Alsobaie Sarah1ORCID

Affiliation:

1. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia

2. Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia

3. Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia

4. Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia

Abstract

Exposure to long-term chronic unpredictable mild stress (CUMS) can cause redox imbalance and inflammation, which may affect the integrity of the gut barrier. The present study was conducted to investigate the effects of a probiotics bacterium mixture, including Clostridium butyricum (C. butyricum) and Bifidobacterium infantis (B. infantis), on the intestinal homeostasis in rats exposed to multiple low-intensity stressors for 28 days. The mechanism of CUMS-induced altered intestinal homeostasis was evaluated by focusing on the nuclear factor-E2-related factor-2 (Nrf-2) pathway. In contrast to the CUMS group, probiotic mixture supplementation significantly (p < 0.01) reversed the stress-induced elevated corticosterone level, protein and lipid oxidation, and increased enzymatic and non-enzymatic antioxidant levels, as well as upregulated Nrf-2/HO-1 pathway. Probiotics supplementation further significantly (p < 0.01) decreased the CUMS-induced inflammation, altered T-lymphocyte levels, and suppressed the protein expression of nuclear factor kappa B (NF-κB) in rat intestines. Improvement in histological changes and intestinal barrier integrity further validate the beneficial effects of probiotic mixtures on CUMS-induced altered intestinal morphology. In conclusion, our results suggest that the combination of C. butyricum and B. infantis significantly attenuated CUMS-induced oxidative stress, inflammation, and T-lymphocyte modulation by upregulating Nrf-2/HO-1 signaling and inhibiting NF-κB expression in rat intestine.

Funder

Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3