PD-L1 Exon 3 Is a Hidden Switch of Its Expression and Function in Oral Cancer Cells

Author:

Yan Lingyan1,Sun Yanan1,Guo Jihua12ORCID,Jia Rong1ORCID

Affiliation:

1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China

2. Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China

Abstract

The interaction between programmed cell death 1 ligand 1 (PD-L1) and programmed cell death protein 1 (PD-1) protects tumor cells from immune surveillance. PD-L1 exon 3 is a potential alternative exon and encodes an Ig variable (IgV) domain. Here, we found that a lack of exon 3 leads to the significant loss of cellular membrane locations and the dramatically reduced protein expression of PD-L1, indicating that PD-L1 exon 3 is essential for its protein expression and translocation to the cell membrane. Notably, oral cancer cells show almost no exon 3 skipping to ensure the expression of the full-length, functional PD-L1 protein. We discovered two key exonic splicing enhancers (ESEs) for exon 3 inclusion. Two efficient antisense oligonucleotides (ASOs) were identified to block these two ESEs, which can significantly trigger exon 3 skipping and decrease the production of full-length, functional PD-L1 on the surface of cancer cells. Treatment of oral cancer cells with these ASOs significantly enhanced immune cells’ suppression of cancer cell proliferation. Surprisingly, these two ASOs also significantly inhibited cell growth and induced cell pyroptosis in oral cancer cells. Altogether, the results of our study demonstrate the pivotal roles of exon 3 in PD-L1 expression and provide a novel anti-PD-L1 method.

Funder

National Natural Science Foundation of China

the International Scientific Collaboration Project of Hubei Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3