SOCS3 Protein Mediates the Therapeutic Efficacy of Mesenchymal Stem Cells against Acute Lung Injury

Author:

Kim Young Eun1,Sung Dong Kyung2,Bang Yuna23,Sung Se In2,Yang Misun2,Ahn So Yoon2,Chang Yun Sil124ORCID

Affiliation:

1. Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea

2. Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea

3. Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea

4. Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea

Abstract

Mesenchymal stem cells (MSCs) have been studied as novel therapeutic agents because of their immunomodulatory properties in inflammatory diseases. The suppressor of cytokine signaling (SOCS) proteins are key regulators of the immune response and macrophage modulation. In the present study, we hypothesized that SOCS in MCSs might mediate macrophage modulation and tested this in a bacteria-induced acute lung injury (ALI) mouse model. The macrophage phenotype was observed in RAW264.7 alveolar macrophages exposed to lipopolysaccharide (LPS) in an in vitro model, and in the ALI mouse model induced by tracheal administration of Escherichia coli (1 × 107 CFU in 0.05mL PBS). In LPS-exposed RAW264.7 cells, the levels of markers of M1 macrophages, such as CD86 and pro-inflammatory cytokines (IL-1α, IL-1β, IL-6 and TNF-α), significantly increased, but they significantly reduced after MSC treatment. Meanwhile, the levels of markers of M2 macrophages, such as CD204 and anti-inflammatory cytokines (IL-4 and IL-10), increased after LPS exposure, and further significantly increased after MSC treatment. This regulatory effect of MSCs on M1/M2 macrophage polarization was significantly abolished by SOCS3 inhibition. In the E. coli-induced ALI model, tissue injury and inflammation in the mouse lung were significantly attenuated by the transplantation of MSCs, but not by SOCS3-inhibited MSCs. The regulatory effect of MSCs on M1/M2 macrophage polarization was observed in the lung injury model but was significantly abolished by SOCS3 inhibition. Taken together, our findings suggest that SOCS3 is an important mediator for macrophage modulation in anti-inflammatory properties of MSCs.

Funder

Korea Health Technology R&D Project through the Korea Health Industry Development Institute

Ministry of Health and Welfare, Republic of Korea

Future Medicine 2030 Project from Samsung Medical Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3