Diversity in Cell Morphology, Composition, and Function among Adipose Depots in River Buffaloes

Author:

Yang Xintong1,Zhu Ruirui1,Song Ziyi1ORCID,Shi Deshun1,Huang Jieping1ORCID

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China

Abstract

Fat deposition is a significant economic trait in livestock animals. Adipose tissues (ATs) developed in subcutaneous and visceral depots are considered waste whereas those within muscle are highly valued. In river buffaloes, lipogenesis is highly active in subcutaneous (especially in the sternum subcutaneous) and visceral depots but not in muscle tissue. Revealing the features and functions of ATs in different depots is significant for the regulation of their development. Here, we characterize the cell size, composition, and function of six AT depots in river buffaloes. Our data support that the subcutaneous AT depots have a larger cell size than visceral AT depots, and the subcutaneous AT depots, especially the sternum subcutaneous AT, are mainly associated with the extracellular matrix whereas the visceral AT depots are mainly associated with immunity. We found that sternum subcutaneous AT is significantly different from ATs in other depots, due to the high unsaturated fatty acid content and the significant association with metabolic protection. The perirenal AT is more active in FA oxidation for energy supply. In addition, the expression of HOX paralogs supports the variable origins of ATs in different depots, indicating that the development of ATs in different depots is mediated by their progenitor cells. The present study enhances our understanding of the cellular and molecular features, metabolism, and origin of AT depots in buffaloes, which is significant for the regulation of fat deposition and provides new insights into the features of AT depots in multiple discrete locations.

Funder

Open Project of the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3