Molecular Mechanisms Underlying the Progression of Aortic Valve Stenosis: Bioinformatic Analysis of Signal Pathways and Hub Genes

Author:

Tojo Taiki1ORCID,Yamaoka-Tojo Minako12ORCID

Affiliation:

1. Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara 252-0374, Japan

2. Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Japan

Abstract

The calcification of the aortic valve causes increased leaflet stiffness and leads to the development and progression of stenotic aortic valve disease. However, the molecular and cellular mechanisms underlying stenotic calcification remain poorly understood. Herein, we examined the gene expression associated with valve calcification and the progression of calcific aortic valve stenosis. We downloaded two publicly available gene expression profiles (GSE83453 and GSE51472) from NCBI-Gene Expression Omnibus database for the combined analysis of samples from human aortic stenosis and normal aortic valve tissue. After identifying the differentially expressed genes (DEGs) using the GEO2R online tool, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We also analyzed the protein–protein interactions (PPIs) of the DEGs using the NetworkAnalyst online tool. We identified 4603 upregulated and 6272 downregulated DEGs, which were enriched in the positive regulation of cell adhesion, leukocyte-mediated immunity, response to hormones, cytokine signaling in the immune system, lymphocyte activation, and growth hormone receptor signaling. PPI network analysis identified 10 hub genes: VCAM1, FHL2, RUNX1, TNFSF10, PLAU, SPOCK1, CD74, SIPA1L2, TRIB1, and CXCL12. Through bioinformatic analysis, we identified potential biomarkers and therapeutic targets for aortic stenosis, providing a theoretical basis for future studies.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3