The Design, Synthesis and Application of Nitrogen Heteropolycyclic Compounds with UV Resistance Properties

Author:

Yang Biao1,Yang Xinbo12,Li Yuchuan1ORCID,Pang Siping1

Affiliation:

1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Exposure to ultraviolet (UV) light is known to cause skin aging, skin damage, cancer, and eye diseases, as well as polymer material aging. Therefore, significant attention has been devoted to the research and development of UV absorbers. Considering the robust hydrogen bonding and conjugated structure present in nitrogen-containing polycyclic compounds, these compounds have been selected as potential candidates for exploring ultraviolet absorption properties. After structural optimization and the simulation of ultraviolet absorption spectra, four tris-[1,2,4]-triazolo-[1,3,5]-triazine (TTTs) derivatives, namely TTTB, TTTD, TTTJ, and TTTL, were selected as the preferred compounds and synthesized. The structure of the compound was determined using various analytical techniques, including FTIR, 1HNMR, 13CNMR, HRMS, and XRD. Subsequently, composite films of polyvinyl chloride (PVC) and TTTs were produced using a simple solvent casting technique. The PVC films were subjected to UV age testing by exposing them to an ultraviolet aging chamber. The age-resistant performance of the fabricated films was evaluated using an ultraviolet spectrophotometer and Fourier infrared spectrum instrument. The findings suggest that TTTs exhibit a noteworthy capacity for absorbing ultraviolet radiation. The TTTL compound exhibits a superior UV absorption performance compared to commercially available UV absorbers such as UV-0 and UV-327 in the market.

Funder

Industrial Innovation Fund of the Lunan Research Institute of BIT

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3