Affiliation:
1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract
Exposure to ultraviolet (UV) light is known to cause skin aging, skin damage, cancer, and eye diseases, as well as polymer material aging. Therefore, significant attention has been devoted to the research and development of UV absorbers. Considering the robust hydrogen bonding and conjugated structure present in nitrogen-containing polycyclic compounds, these compounds have been selected as potential candidates for exploring ultraviolet absorption properties. After structural optimization and the simulation of ultraviolet absorption spectra, four tris-[1,2,4]-triazolo-[1,3,5]-triazine (TTTs) derivatives, namely TTTB, TTTD, TTTJ, and TTTL, were selected as the preferred compounds and synthesized. The structure of the compound was determined using various analytical techniques, including FTIR, 1HNMR, 13CNMR, HRMS, and XRD. Subsequently, composite films of polyvinyl chloride (PVC) and TTTs were produced using a simple solvent casting technique. The PVC films were subjected to UV age testing by exposing them to an ultraviolet aging chamber. The age-resistant performance of the fabricated films was evaluated using an ultraviolet spectrophotometer and Fourier infrared spectrum instrument. The findings suggest that TTTs exhibit a noteworthy capacity for absorbing ultraviolet radiation. The TTTL compound exhibits a superior UV absorption performance compared to commercially available UV absorbers such as UV-0 and UV-327 in the market.
Funder
Industrial Innovation Fund of the Lunan Research Institute of BIT
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献