Experimental Investigations on the Thermal Characteristics of Domestic Convectors

Author:

Gibb Duncan1,Oliphant Jack1,McIntosh Ross Gary1,Asim Taimoor1ORCID,Karnik Aditya1ORCID

Affiliation:

1. School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK

Abstract

Better understanding of local thermal characteristics of domestic convectors could play a crucial role in reducing energy consumption for space heating and decarbonizing the economy. The current study evaluates the impact of varying water inlet temperature and flowrate on the local surface temperature of domestic convectors through extensive empirical investigations. Experiments are performed using a custom-made test-rig featuring a 400 mm × 600 mm Type 11 convector within a large and well-ventilated environment, minimizing the thermal influence of the surrounding space on the thermal behavior of the convector. Infrared thermography (IR) is used to acquire local surface temperature data for further analysis. Based on the results obtained, it has been observed that the inlet water temperature has a negligible effect on thermal characteristics of the convector while increasing the flowrate substantially decreases the time required for the convector to reach maximum surface temperature. Based on the numerical data, an analytical model for average surface temperature has been developed using multiple variable regression analysis, demonstrating a prediction accuracy of >90% compared with the experimental data. A detailed understanding of the heating behavior exhibited by domestic convectors has led to a better understanding of the local thermal characteristics, while the prediction model can be used to develop machine learning algorithms to install better flow control techniques for efficient space heating.

Publisher

MDPI AG

Reference22 articles.

1. (2014). Convectors Part 1: Technical Specifications and Requirements (Standard No. BSI Standard EN-442).

2. Evaluation of flow field over panel radiators to investigate the effect of different convector geometries;Calisir;J. Build. Eng.,2021

3. The effect of surface roughness and emissivity on radiator output;Shati;Energy Build.,2011

4. Numerical simulation for optimization of the indoor environment of an occupied office building using double-panel and ventilation radiator;Ganesh;J. Build. Eng.,2020

5. The effect of wall emissivity on radiator output;Beck;Build. Serv. Eng. Res. Technol.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3