Environmental Impact of e-Fuels via the Solid Oxide Electrolyzer Cell (SOEC) and Fischer–Tropsch Synthesis (FTS) Route for Use in Germany

Author:

Labunski Frank1,Schnurr Birte1,Pössinger Julia2,Götz Thomas1ORCID

Affiliation:

1. Division Energy, Transport and Climate Policy, Research Unit Energy Policy, Wuppertal Institute for Climate, Environment and Energy, 42103 Wuppertal, Germany

2. Faculty of Electrical, Information and Media Engineering, University of Wuppertal, 42119 Wuppertal, Germany

Abstract

This paper examines the current and prospective greenhouse gas (GHG) emissions of e-fuels produced via electrolysis and Fischer–Tropsch synthesis (FTS) for the years 2021, 2030, and 2050 for use in Germany. The GHG emissions are determined by a scenario approach as a combination of a literature-based top-down and bottom-up approach. Considered process steps are the provision of feedstocks, electrolysis (via solid oxide co-electrolysis; SOEC), synthesis (via Fischer–Tropsch synthesis; FTS), e-crude refining, eventual transport to, and use in Germany. The results indicate that the current GHG emissions for e-fuel production in the exemplary export countries Saudi Arabia and Chile are above those of conventional fuels. Scenarios for the production in Germany lead to current GHG emissions of 2.78–3.47 kgCO2-eq/L e-fuel in 2021 as the reference year and 0.064–0.082 kgCO2-eq/L e-fuel in 2050. With a share of 58–96%, according to the respective scenario, the electrolysis is the main determinant of the GHG emissions in the production process. The use of additional renewable energy during the production process in combination with direct air capture (DAC) are the main leverages to reduce GHG emissions.

Funder

Federal Ministry for Economics and Climate Action

Wuppertal Institut für Klima

Umwelt

Energie gGmbH

Publisher

MDPI AG

Reference50 articles.

1. Bundesregierung (2021). Bundes-Klimaschutzgesetz (KSG).

2. Bundesregierung (2023). Modernisierungspaket fuer Klimaschutz und Planungsbeschleunigung.

3. Agora Verkehrswende, Agora Energiewende, and Frontier Economics (2018). Die Zukünftigen Kosten Strombasierter Synthetischer Brennstoffe, Frontier Economics.

4. Mathiesen, B.V., Ridjan, I., Connolly, D., Nielsen, M.P., Vang Hendriksen, P., Bjerg Mogensen, M., Højgaard Jensen, S., and Dalgaard Ebbesen, S. (2013). Technology Data for High Temperature Solid Oxide Electrolyser Cells, Alkali and PEM Electrolysers, Aalborg University.

5. A Life Cycle Assessment of Greenhouse Gas Emissions from Direct Air Capture and Fischer-Tropsch Fuel Production;Liu;Sustain. Energy Fuels,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3