An Estimation of the Available Spatial Intensity of Solar Energy in Urban Blocks in Wuhan, China

Author:

Zhang Hui123,Huang Xiaoxi12,Wang Zhengwei12,Jin Shiyu1,Xiao Benlin1,Huang Yanyan12,Zhong Wei3,Meng Aofei3

Affiliation:

1. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

2. Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China

3. ChinTiyan New Energy (Hubei) Co., Ltd., Wuhan 430223, China

Abstract

Urban form is an important factor affecting urban energy. However, the design of urban form and energy mostly belong to two separate disciplines and fields, and urban energy planning research rarely considers their mutual relationship. The available space intensity (ASI) of solar energy is formed on the basis of energy planning and urban design; the objective of this research is to evaluate the impact of urban form on the ASI of solar energy and to propose strategies for planning of the space that is available for solar energy so as to improve the efficiency of urban energy utilization and achieve sustainable urban development. Methodologically, this study firstly proposes a model to quantify the ASI of solar energy using three indicators: solar radiation intensity (SRI), solar installation intensity (SII), and solar generation intensity (SEGI). Then, we quantitatively calculate the solar ASI of nine types of typical urban blocks in a sub-center of Wuhan City, Nanhu. Correlation analysis and multiple linear regression analysis are then used to analyze the correlation between the form indicators and solar ASI, as well as the degree of influence. The results show that the differences in SRI, SII, and SEGI amongst the nine types of city blocks were as high as 114.61%, 162.50%, and 61.01%. The solar ASI was mainly affected by three form indicators: the building coverage ratio, the average building height, and the volume-to-area ratio. Reducing the building coverage ratio and increasing vertical development at the same time can effectively improve the ASI of solar energy. The results of this study and the established method provide an important reference and rapid calculation tool for urban energy planning and design, reducing the data and time usually required for solar analysis at the block scale.

Funder

Humanities and Social Science Research Project of the Ministry of Education of China

Hubei Provincial Central Leading Local Science and Technology Development Special Project

Local Cooperative Project of China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3