Numerical Simulation of the Simultaneous Development of Multiple Fractures in Horizontal Wells Based on the Extended Finite Element Method

Author:

Ping Enshun1,Zhao Peng2,Zhu Haiyan34,Wang Yuzhong1,Jiao Zixi34,Zhao Qingjie1,Feng Gan56ORCID

Affiliation:

1. Downhole Technology Service Company, CNPC Bohai Drilling Engineering Company Limited, Tianjin 300457, China

2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China

4. College of Energy, Chengdu University of Technology, Chengdu 610059, China

5. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

6. College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China

Abstract

Simultaneous multiple-fracture treatments in horizontal wellbores have become an essential technology for the economic development of shale gas reservoirs. During hydraulic fracturing, fracture initiation and propagation always induce additional stresses on the surrounding rock. When multiple fractures develop simultaneously, the development of some fractures is limited due to the stress-shadow effect. An in-depth understanding of the multiple-fracture propagation mechanism as reflected by fracture morphology and flow rate distribution can help to set reasonable operation parameters for improving the uniformity of multiple fractures and forming a complex fracture network according to the different in situ stress conditions in a reservoir to increase the shale gas recovery and reduce the cost. In this study, a two-dimensional (2D) fracture propagation model was developed based on the extended finite element method (XFEM). Then, the influences of various factors, including geological and operational factors, on the development of multiple fractures were studied. The results of numerical simulations showed that increasing the cluster spacing or injecting fracturing fluid with lower viscosity can help reduce the stress-shadow effect. In the case of smaller in situ stress differences, the deflection of the fractures was larger due to the stress-shadow effect. As the stress difference increased, the direction of the propagation of the fracture was gradually biased towards the direction of maximum horizontal stress. In addition, the injection rate had some effects on the fracture morphology and flow rate distribution. However, as the injection rate increased, the dominant fracture developed rapidly, and the fracture length significantly increased.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3