Simulation Study on Temperature and Stress and Deformation on Encapsulated Surfaces under Spray Cooling

Author:

Peng Yuhang12,Niu Zhi1,Zhu Shiquan12,Qi Tian12,Lv Cai12

Affiliation:

1. School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450007, China

2. Henan International Joint Laboratory of Energy Efficient Conversion and Utilization, Zhengzhou 450007, China

Abstract

Spray cooling is an effective heat dissipation technology and is widely used in the heat dissipation of encapsulated structures, but most of the research has only focused on the heat transfer performance itself and has lacked the analysis of surface stress and deformation. In this paper, a thermal stress coupling model was established under spray conditions, and the influence of spray parameters such as the spray height, spray flow, and nozzle inclination on heat transfer, surface stress, and deformation were studied. The result indicated that the lower the surface temperature, the smaller the stress and deformation. What is more, there was an optimal spray height (15 mm) to achieve the best heat transfer, and the surface stress and deformation were also minimal at the same time which the values were 28.97 MPa and 4.24 × 10−3 mm, respectively. The larger the spray flow rate, the better the heat transfer effect and the smaller the surface stress and deformation. When the spray flow rate was 24.480 L/h, the minimum values of surface stress and deformation were 25.42 MPa and 3.89 × 10−3 mm, respectively. The uniformity of surface stress distribution could be effectively improved with the increase in flow rate. Compared to 10 and 15 degree nozzle inclination, when the nozzle was perpendicular to the cooling surface, the surface stress and deformation were minimal.

Funder

National Natural Science Foundation of China

Henan Provincial Key Research and Development and Promotion Special Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3