Stability Analysis of Cofferdam with Double-Wall Steel Sheet Piles under Wave Action from Storm Surges

Author:

Zhu Yan1,Bi Jingchao1,Xing Haofeng23,Peng Ming23ORCID,Huang Yu23ORCID,Wang Kaifang1,Pan Xinyu1

Affiliation:

1. Shanghai Research Center of Ocean and Shipbuilding Engineering, China Shipbuilding NDRI Engineering Co., Ltd., Shanghai 200090, China

2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China

3. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

Double-wall steel sheet piles (DSSPs) are widely used in large-span cofferdams for docks due to their good performance against wave action during storm surges. This paper describes a study of the dynamic behavior of a DSSP cofferdam under wave action through flume tests and a numerical simulation that combined computational fluid dynamics (CFD) and the finite element method. The influences of the water level and wave height on the DSSP cofferdam were investigated experimentally and numerically. Tall waves in shallow water broke upon and impacted the seaside pile with large dynamic wave pressure, dramatically increasing the stress and displacement of the seaside pile. The overlap of the traveling and reflected waves increased the excess pore water pressure near the seaside pile due to taller overlapped waves and higher wave frequency. The DSSP cofferdam failed under the combined actions of the dynamic wave pressure and erosion of the landside seabed. The leakage and overflow of the breaking waves resulted in significant erosion of the landside seabed and greatly weakened the support of the seabed. The dynamic wave pressure then pushed the DSSP cofferdam until it failed. The simulation with the combined methods of CFD and FEM resulted in trends that were similar to those of the test measurements. Compared to the quasi-static method and pseudo-dynamic method, the results of the simulation via the present method were much closer to the test results because the simulation included the effects of breaking waves. The reinforced measure worked well to prevent the DSSP cofferdam in a sandy seabed foundation from continuous failures of deformation–leakage–erosion–tilting. However, it failed in a clay interlayer seabed foundation due to the large settlement.

Funder

Program of Shanghai Academic/Technology Research Leader

National Natural Science Foundation of China

Program of Shanghai Science and Technology Commission

Publisher

MDPI AG

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3