Abstract
Lichens often grow in microhabitats where they experience severe abiotic stresses. Some species respond to high UV radiation by synthesizing dark brown melanic pigments in the upper cortex. However, unlike the melanized structures of non-lichenized fungi, the morphology of the melanic layer in lichens remains unstudied. Here, we analyzed the morphology, ultrastructure, and elemental composition of the melanized layer in UV-exposed thalli of the lichen Lobaria pulmonaria (L.) Hoffm. Using light microscopy, we detected a pigmented layer sensitive to staining with 3,4-L-dihydroxyphenylalanine, a precursor of eumelanin, in the upper cortex of melanized thalli. Analysis of cross-sections of melanized thalli using scanning electron microscopy revealed that melanin-like granules are deposited into the hyphal lumens. Melanized thalli also possessed thicker hyphal cell walls compared to pale thalli. Energy-dispersive X-ray spectroscopy analysis of the elemental composition of the hyphal walls and extracted melanin indicated that the type of melanin synthesized by L. pulmonaria is eumelanin. Transmission electron microscopy was used to show that during melanization melanosome-like dark vesicles are transported to the cell surface and secreted into the cell walls of the fungal hyphae. Results from this study provide new insights into the effects of melanin synthesis on the microstructure of lichen thalli.
Funder
Russian Science Foundation
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献