Abstract
Microsporidia are a big group of single-celled obligate intracellular organisms infecting most animals and some protozoans. These minimalist eukaryotes lack numerous genes in metabolism and vesicle trafficking. Here, we demonstrated that the spore wall protein NbSWP12 of microsporidium Nosema bombycis belongs to Bin/Amphiphysin/Rvs (BAR) protein family and can specifically bind with phosphatidylinositol 3-phosphate [Ptdlns(3)P]. Since Ptdlns(3)P is involved in endosomal vesicle biogenesis and trafficking, we heterologous expressed NbSWP12 in yeast Saccharomyces cerevisiae and proved that NbSWP12 can target the cell membrane and endocytic vesicles. Nbswp12 transformed into Gvp36 (a BAR protein of S. cerevisiae) deletion mutant rescued the defect phenotype of vesicular traffic. This study identified a BAR protein function in vesicle genesis and sorting and provided clues for further understanding of how microsporidia internalize nutrients and metabolites during proliferation.
Funder
National Natural Science Foundation of China
the Academician Fund of Chongqing/Natural Science Foundation of Chongqing
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献