Assessing On-Road Emission Flow Pattern under Car-Following Induced Turbulence Using Computational Fluid Dynamics (CFD) Numerical Simulation

Author:

Shi XueqingORCID,Sun Daniel (Jian)ORCID,Fu Song,Zhao ZhonghuaORCID,Liu Jinfang

Abstract

Research assessing on-road emission flow patterns from motor vehicles is essential in monitoring urban air quality, since it helps to mitigate atmospheric pollution levels. To reveal the influence of vehicle induced turbulence (VIT) caused by both front- and rear-vehicles on traffic exhaust and verify the applicability of the simplified line source emission model, a Computational Fluid Dynamics (CFD) numerical simulation was used to investigate the micro-scale vehicle pollutant flow patterns. The simulation results were examined through sensitivity analysis and compared with the field measured carbon monoxide (CO) concentration. Conclusions indicate that the vehicle induced turbulence caused by the airflow blocking effect of both front- and rear-vehicles impedes the diffusion of front-vehicle traffic exhaust, compared with that of the rear vehicle. The front-vehicle isosurface with the CO mass fraction of 0.0012 extended to 6.0 m behind the vehicle, while that of the rear-vehicle extends as far as 12.7 m. But for the entire motorcade, VIT is beneficial to the diffusion of pollutants in car-following situations. Meanwhile, within the range of 9 m behind the rear of the lagging vehicle lies a vehicle induced turbulence zone. Furthermore, the influence of vehicle induced turbulence on traffic exhaust flow pattern is obvious within a range of 1 m on both sides of the vehicle body, where the concentration gradient of on-road emission is larger and contains severe mechanical turbulence. As a result, in the large concentration gradient area of the pollutant flow field, which accounts for 99.85% of the total concentration gradient, using the line source models to represent the on-road emission might introduce considerable errors due to neglecting the influence of vehicle induced turbulence. Findings of this study may shed lights on predicting emission concentrations in multiple locations by selecting appropriate on-road emission source models.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3