Analysis of the Sustainable Use of Geothermal Waters and Future Development Possibilities—A Case Study from the Opole Region, Poland

Author:

Boguniewicz-Zabłocka ,Łukasiewicz ,Guida

Abstract

To achieve future energy policy goals, efficient energy systems based on geothermal water should be used more widely. The presented case study from the Opole region in Poland shows that there is great potential for investors interested in recovering geothermal energy in new facilities, for example to heat the domestic districts. The geological structure of the Opolskie Voivodship demonstrates the presence of rich geothermal water resources. Currently, these resources are not used for power engineering in the Opole Region, except for in a few passive houses. The existing boreholes have waters which reach temperatures ranging from 20 to 90 °C and prove that the region displays a high energy potential. The results from the calculations here show that the use of three low temperature geothermal intakes could be possible in three locations, namely in Grabin, in the area of Nysa, and in Wołczyn. This could generate thermal energy at a level of 34 GWh/year. This corresponds to the heat demand of approximately 1150 detached houses with an area of 150 square meters. The results show that thermal energy for a medium size housing district can be supplied from a single borehole. The temperatures of water in the analyzed intakes determine their method of use as a lower heat source for heat pumps.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference40 articles.

1. Application of Flokor products in geothermal water treatment in Poland;Podgórni;Innov. Opole-Eff. Coop. Sci. Econ.,2015

2. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC (PDF),2009

3. Master Plan Geothermal Energy in the Netherlands. A Broad Foundation for Sustainable Heat Supply;Schof,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3