Recent Developments in the Optimization of the Bulk Heterojunction Morphology of Polymer: Fullerene Solar Cells

Author:

Gaspar Hugo,Figueira Flávio,Pereira Luiz,Mendes Adélio,Viana Júlio,Bernardo GabrielORCID

Abstract

Organic photovoltaic (OPV) devices, made with semiconducting polymers, have recently attained a power conversion efficiency (PCE) over 14% in single junction cells and over 17% in tandem cells. These high performances, together with the suitability of the technology to inexpensive large-scale manufacture, over lightweight and flexible plastic substrates using roll-to-roll (R2R) processing, place the technology amongst the most promising for future harvesting of solar energy. Although OPVs using non-fullerene acceptors have recently outperformed their fullerene-based counterparts, the research in the development of new fullerenes and in the improvement of the bulk-heterojunction (BHJ) morphology and device efficiency of polymer:fullerene solar cells remains very active. In this review article, the most relevant research works performed over the last 3 years, that is, since the year 2016 onwards, in the field of fullerene-based polymer solar cells based on the copolymers PTB7, PTB7-Th (also known as PBDTTT-EFT) and PffBT4T-2OD, are presented and discussed. This review is primarily focused on studies that involve the improvement of the BHJ morphology, efficiency and stability of small active area devices (typically < 15 mm2), through the use of different processing strategies such as the use of different fullerene acceptors, different processing solvents and additives and different thermal treatments.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3