Metal Oxide Thin-Film Heterojunctions for Photovoltaic Applications

Author:

Nordseth Ørnulf,Kumar Raj,Bergum Kristin,Fara LaurentiuORCID,Dumitru Constantin,Craciunescu Dan,Dragan Florin,Chilibon Irinela,Monakhov Edouard,Foss Sean,Svensson Bengt

Abstract

Silicon-based tandem solar cells incorporating low-cost, abundant, and non-toxic metal oxide materials can increase the conversion efficiency of silicon solar cells beyond their conventional limitations with obvious economic and environmental benefits. In this work, the electrical characteristics of a metal oxide thin-film heterojunction solar cell based on a cuprous oxide (Cu2O) absorber layer were investigated. Highly Al-doped n-type ZnO (AZO) and undoped p-type Cu2O thin films were prepared on quartz substrates by magnetron sputter deposition. The electrical and optical properties of these thin films were determined from Hall effect measurements and spectroscopic ellipsometry. After annealing the Cu2O film at 900 °C, the majority carrier (hole) mobility and the resistivity were measured at 50 cm2/V·s and 200 Ω·cm, respectively. Numerical modeling was carried out to investigate the effect of band alignment and interface defects on the electrical characteristics of the AZO/Cu2O heterojunction. The analysis suggests that the incorporation of a buffer layer can enhance the performance of the heterojunction solar cell as a result of reduced conduction band offset.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Self-Cleaning Approach Utilizing Metal Oxide Thin Films and Nanocomposites;Nature-Inspired Self-Cleaning Surfaces in the Nanotechnology Era;2023-09-27

2. Laser-Assisted Copper Oxidation;Archives of Metallurgy and Materials;2023-07-26

3. Review: Heterojunction Tandem Solar Cells on Si-Based Metal Oxides;Energies;2023-03-26

4. Development of metal oxide heterostructures for photovoltaic and solar cell applications;Metal Oxide-Based Heterostructures;2023

5. Cuprous oxide photocathodes for solar water splitting;Chemical Physics Reviews;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3