Effects of the Mg/Si Ratio on Microstructure, Mechanical Properties, and Precipitation Behavior of Al–Mg–Si–1.0 wt %-Zn Alloys

Author:

Li Yong,Gao Guanjun,Wang Zhaodong,Di Hongshuang,Li Jiadong,Xu Guangming

Abstract

Aluminum alloys are widely used as first-choice materials for lightweight automotive applications. It is important that an alloy have a balance between strength and formability. In this study, the alloys were melted, cast, hot rolled, and cold rolled into 1 mm-thick sheets. The microstructure, mechanical properties, and precipitation behavior of Al–Mg–Si–1.0 wt %-Zn alloys with Mg/Si ratios of 0.5, 1, and 2 after solution treatment were studied using optical and electron microscopy, a tensile test, the Vickers hardness test, and differential scanning calorimetry. The results showed that a high density and number of Al–Fe–Si particles were observed in the matrix, thus causing the formation of more homogeneous and smaller recrystallized grains after treatment with the solution. In addition, a higher volume fraction of cubeND and P-types texture components formed during solution treatment. Also, a high r value and excellent deep drawability were achieved in the medium-Mg/Si-ratio alloy. The formation of denser strengthening precipitates led to a better paint-bake hardening effect in comparison with the other two alloys. Furthermore, the precipitation kinetics were enhanced by the addition of Si, and the addition of Zn did not alter the precipitation sequence of the Al–Mg–Si alloy. The dual-phase strengthening effect was not achieved in the studied alloys during paint-bake treatment at 175 °C.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3