Application of Fuzzy Theory to the Evaluation Model of Product Assembly Design and Usability Operation Complexity

Author:

Ko

Abstract

In order to make people’s lives more convenient and enhance living standards, the composition of a product usually includes more than one component. However, a product is created by the joint endeavor of people from various territories and therefore one of the important considerations is making a product merge into consumers’ daily lives rather than simply fulfilling its functions. There might be conflicts with people’s existing life patterns or existing values, which should be taken into consideration during the manufacturing process. This study is an investigation of the process of assembly by considering the assembly operations and the assembly operating time. By determining the relationship between components, the assembly concept of most components was analyzed. A fuzzy comprehensive evaluation was carried out during the evaluation of the degree of complexity of user operations. Depending on the ranking of membership, the most appropriate assembly was determined and this serves as a reference for designers to select the optimal product assembly. By recording the consumer usage models, the optimal assembly and usage model of product design were also proposed. The goal of this study is to find the balance between assembly evaluation and user usage model by the process in order to allow designers to determine the new assembly concepts that meet consumer usage models. A case study of four bedside stereos was carried out by implementing the proposed approach in order to determine the evaluation principle of assembly. The purpose of this is to enhance the balance between assembly design and user operation complexity for making efficient decisions. A product design can comply with the spirit of concurrent engineering and the quality of a product design can be enhanced.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3