Abstract
Tissue growth on bioscaffolds can be controlled using substrate geometry such as substrate curvature. In this study, we present a mathematical model and numerical simulation method for tissue growth on a bioscaffold to investigate the effect of local curvature on tissue growth. The mathematical model is based on the Allen–Cahn (AC) equation, which has been extensively used to model many problems involving motion by mean curvature. By solving the AC equation using the explicit Euler method, the proposed method is simple and fast. Numerical simulations on various geometries are presented to demonstrate the applicability of the proposed framework on tissue growth on a bioscaffold.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献