Analytical Performance Prediction of an Electromagnetic Launcher and Its Validation by Numerical Analyses and Experiments

Author:

Kim Hong-KyoORCID,Kang Beom-Soo,Moon Young HoonORCID,Kim JeongORCID

Abstract

An electromagnetic launcher (EML) is used to generate high launching velocities. The basic governing equation of the propulsion force of an EML is that the propulsion force is directly proportional to current and inductance gradient. L ′ is the inductance gradient that refers to the increase or decrease in the inductance with the length of rails. The inductance gradient is easily calculated because it is a function of the rail shape and frequency. However, current ( I ) flowing in an EML is calculated by the series resistor, inductor, and capacitor (RLC) equation of the equivalent circuit. Here, L is not constant and increases as the projectile muzzles. Owing to the increase in inductance, the current ( I ) and voltage ( V ) vary depending on the projectile position. Therefore, inductance, current, and voltage should be exactly obtained to calculate the exact current at a specific time. This study deals with analytical performance prediction using the relation EML propulsion force with real-time current, which is based on an increase in resistance and inductance at a specific time. To validate this approach, the results of the current waves are compared via numerical analyses and experiments. Using this prediction method, it is possible to determine and optimize the rail shape and length from the capacitor bank and vice versa.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3