Control of Sunroof Buffeting Noise by Optimizing the Flow Field Characteristics of a Commercial Vehicle

Author:

Tang Rongjiang,He Hongbin,Lu Zengjun,Li Shenfang,Xu Enyong,Xiao Fei,Núñez-Delgado AvelinoORCID

Abstract

When a commercial vehicle is driving with the sunroof open, it is easy for the problem of sunroof buffeting noise to occur. This paper establishes the basis for the design of a commercial vehicle model that solves the problem of sunroof buffeting noise, which is based on computational fluid dynamics (CFD) numerical simulation technology. The large eddy simulation (LES) method was used to analyze the characteristics of the buffeting noise with different speed conditions while the sunroof was open. The simulation results showed that the small vortex generated in the cab forehead merges into a large vortex during the backward movement, and the turbulent vortex causes a resonance response in the cab cavity as the turbulent vortex moves above the sunroof and falls into the cab. Improving the flow field characteristics above the cab can reduce the sunroof buffeting noise. Focusing on the buffeting noise of commercial vehicles, it is proposed that the existing accessories, including sun visors and roof domes, are optimized to deal with the problem of sunroof buffeting noise. The sound pressure level of the sunroof buffeting noise was reduced by 6.7 dB after optimization. At the same time, the local pressure drag of the commercial vehicle was reduced, and the wind resistance coefficient was reduced by 1.55% compared to the original commercial vehicle. These results can be considered as relevant, with high potential applicability, within this field of research.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3