Affiliation:
1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
2. College of Urban and Environmental Sciences, Northwest University, Xi’an 710027, China
Abstract
High Mountain Asia (HMA) is one of the concentrated areas of surging glaciers in the world. The dynamic movement of surging glaciers not only reshapes the periglacial landscape but also has the potential to directly or indirectly trigger catastrophic events. Therefore, it is crucial to understand the distribution patterns, periodicities, and occurrence mechanisms of surging glaciers. Based on Landsat TM/ETM+/OLI remote sensing images from 1986 to 2021, a total of 244 surging glaciers were identified in HMA in this study, covering an area of 11,724 km2 and accounting for 12.01% of the total area of glaciers in this region. There are 185 surging glaciers identified within the Karakoram Range and Pamirs, which constitute the primary mountainous regions in HMA. From 1986 to 2021, these surging glaciers advanced at least 2802 times and exhibited different temporal and spatial patterns. A total of 36 glaciers in HMA experienced 2 or more surges during this period, with the highest number observed in the Pamirs (19), followed by the Karakorum (13), with the other regions having fewer occurrences. Obvious differences exist in the surge phase and the quiescent phase of glaciers in different regions of HMA. The surge phase of surging glaciers in the Karakoram Range and Pamirs is generally short, mostly in the range of 2~6 years. The quiescent phase lasts for 5~19 years and the overall surge cycle ranges from 9 to 24 years. The complex nature of glacier surges in HMA suggests that multiple mechanisms may be at play, necessitating further research.
Funder
National Natural Science Foundation of China
Strategic Action Plan of Oasis Science
Third Xinjiang Scientific Expedition Program
Open Research Fund of the National Earth Observation Data Center
Gansu Province Education Science and Technology Innovation Project
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献