Remote Sensing-Based Classification of Winter Irrigation Fields Using the Random Forest Algorithm and GF-1 Data: A Case Study of Jinzhong Basin, North China

Author:

Su Qiaomei1,Lv Jin23,Fan Jinlong2,Zeng Weili12,Pan Rong12,Liao Yuejiao12,Song Ying12,Zhao Chunliang24,Qin Zhihao45,Defourny Pierre6

Affiliation:

1. Department of Surveying and Mapping, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030002, China

2. National Satellite Meteorological Center, Beijing 100081, China

3. School of Public Administration, China University of Geosciences, Wuhan 430074, China

4. MOA Key Laboratory of Agricultural Remote Sensing, Institute of Agro-Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

5. School of Geographic Science and Planning, Nanning Normal University, Nanning 530100, China

6. Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

Abstract

Irrigation is one of the key agricultural management practices of crop cultivation in the world. Irrigation practice is traceable on satellite images. Most irrigated area mapping methods were developed based on time series of NDVI or backscatter coefficient within the growing season. However, it has been found that winter irrigation out of growing season is also dominating in north China. This kind of irrigation aims to increase the soil moisture for coping with spring drought and reduce the wind erosion in spring. This study developed a remote sensing-based classification approach to identify irrigated fields out of growing season with Radom Forest algorithm. Four spectral bands and all Normalized Difference Vegetation Index (NDVI) like indices computed from any two of these four bands for each of the seven scenes of GF-1 satellite data were used as the input features in the building of separated RF models and in applying the built models for the classification. The results showed that the mean of the highest out-of-bag accuracies for seven RF models was 94.9% and the mean of the averaged out-of-bag accuracies in the plateau for seven RF models was 94.1%; the overall accuracy for all seven classified outputs was in the range of 86.8–92.5%, Kappa in the range of 84.0–91.0% and F1-Score in the range of 82.1–90.1%. These results showed that the classification was neither overperformed nor underperformed as the accuracies of all classified images were lower than the model ones. This study also found that irrigation started to be applied as early as in November and irrigated fields were increased and suspended in December and January due to freezing conditions. The newly irrigated fields were found again in March and April when the temperature rose above zero degrees. The area of irrigated fields in the study area were increasing over time with sizes of 98.6, 166.9, 208.0, 292.8, 538.0, 623.1, 653.8 km2 from December to April, accounting for 6.1%, 10.4%, 12.9%, 18.2%, 33.4%, 38.7%, and 40.6% of the total irrigatable land in the study area, respectively. The results showed that the method developed in this study performed well. This study found on the satellite images that 40.6% of irrigatable fields were already irrigated before the sowing season and the irrigation authorities were supposed to improve their water supply capacity in the whole year with this information. This study may complement the traditional consideration of retrieving irrigation maps only in growing season with remote sensing images for a large area.

Funder

National key research and development program

ESA project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3