Improving the Transferability of Deep Learning Models for Crop Yield Prediction: A Partial Domain Adaptation Approach

Author:

Ma Yuchi1ORCID,Yang Zhengwei2ORCID,Huang Qunying3ORCID,Zhang Zhou1ORCID

Affiliation:

1. Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

2. Research and Development Division, National Agricultural Statistics Service, United States Department of Agriculture, Washington, DC 20250, USA

3. Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

Over the past few years, there has been extensive exploration of machine learning (ML), especially deep learning (DL), for crop yield prediction, resulting in impressive levels of accuracy. However, such models are highly dependent on training samples with ground truth labels (i.e., crop yield records), which are not available in some regions. Additionally, due to the existence of domain shifts between different spatial regions, DL models trained within one region (i.e., source domain) tend to have poor performance when directly applied to other regions (i.e., target domain). Unsupervised domain adaptation (UDA) has become a promising strategy to improve the transferability of DL models by aligning the feature distributions in the source domain and the target domain. Despite the success, existing UDA models generally assume an identical label space across different domains. This assumption can be invalid in crop yield prediction scenarios, as crop yields can vary significantly in heterogeneous regions. Due to the mismatch between label spaces, negative transfer may occur if the entire source and target domains are forced to align. To address this issue, we proposed a novel partial domain adversarial neural network (PDANN), which relaxes the assumption of fully, equally shared label spaces across domains by downweighing the outlier source samples. Specifically, during model training, the PDANN weighs each labeled source sample based on the likelihood of its yield value given the expected target yield distribution. Instead of aligning the target domain to the entire source domain, the PDANN model downweighs the outlier source samples and performs partial weighted alignment of the target domain to the source domain. As a result, the negative transfer caused by source samples in the outlier label space would be alleviated. In this study, we assessed the model’s performance on predicting yields for two main commodities in the U.S., including corn and soybean, using the U.S. corn belt as the study region. The counties under study were divided into two distinct ecological zones and alternatively used as the source and target domains. Feature variables, including time-series vegetation indices (VIs) and sequential meteorological variables, were collected and aggregated at the county level. Next, the PDANN model was trained with the extracted features and corresponding crop yield records from the U.S. Department of Agriculture (USDA). Finally, the trained model was evaluated for three testing years from 2019 to 2021. The experimental results showed that the developed PDANN model had achieved a mean coefficient of determination (R2) of 0.70 and 0.67, respectively, in predicting corn and soybean yields, outperforming three other ML and UDA models by a large margin from 6% to 46%. As the first study performing partial domain adaptation for crop yield prediction, this research demonstrates a novel solution for addressing negative transfer and improving DL models’ transferability on crop yield prediction.

Funder

United States Department of Agriculture (USDA) National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3