Analysis of Land Surface Temperature Sensitivity to Vegetation in China

Author:

Qian Zhonghua1,Sun Yingxiao1,Chen Zheng2,Ji Fei2ORCID,Feng Guolin1234,Ma Qianrong1

Affiliation:

1. School of Physical Science and Technology, Yangzhou University, Yangzhou 225000, China

2. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

3. Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China

4. Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China

Abstract

China has emerged as one of the global leaders in greening, achieved through human land use management practices, particularly afforestation projects. However, accurately calculating the energy balance processes of vegetated areas remains challenging because of the complexity of physical mechanisms, parameterization schemes, and driving dataset used in current research. In this study, we address these challenges by employing moving window methods in space inspired by “space-for-time”. This approach allows us to eliminate the influence of climate signals on vegetation development over long periods and determine the sensitivity of seasonal contributions of Land Surface Temperature (LST) to Leaf Area Index (LAI) in China from 2001 to 2018. Our findings reveal that the sensitivity of LST to LAI in the climatology period is approximately −0.085 K·m2·m−2, indicating a cooling effect. Moreover, the climatological trend remains negative, suggesting that Chinese vegetation greening is playing an increasingly important role in cooling the land surface. Considering the energy balance equation, we further investigate the underlying mechanisms. It is observed that the radiative feedback consistently contributes positively, while the non-radiative feedback always exerts a negative influence on the sensitivity. These results provide valuable insights into the complex interactions between vegetation greening and land surface temperature in China, providing informed land management and climate adaptation strategies. Understanding these trends and mechanisms is essential for sustainable and effective environmental planning and decision making.

Funder

National Natural Science Foundation of China

Gansu Provincial Science and Technology Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3