A Quick-Look Software for In Situ Magnetic Field Modeling from Onboard Unmanned Aircraft Vehicles (UAVs) Measurements

Author:

Thebault Erwan1ORCID,Gailler Lydie-Sarah1ORCID

Affiliation:

1. Laboratoire Magmas et Volcans, OPGC, IRD, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France

Abstract

UAVs represent a tremendous opportunity to perform geophysical and repeated experiments, particularly in volcanic contexts. Their ability to be deployed rapidly and fly at various altitudes and the fact that they are easy to operate despite complex field conditions make them attractive for magnetic surveys. Detailed maps of the magnetic field in turn bring key constraints on the rocks’ composition, thermal anomalies, intrusive systems, and crustal contrast evolution. Yet, raw magnetic field measurements require careful processing to minimize directional, positional, and crossover errors. Moreover, stitching together adjacent or overlapping surveys acquired at different times and altitudes is not a trivial task. Therefore, it is challenging in remote areas to directly evaluate the consistency of a survey and to ascertain the success of the field mission. In this paper, we present a fast algorithm allowing for a quick-look modeling of scalar magnetic intensity measurements. The approach relies on rectangular harmonic analysis (RHA). The field measurements are automatically corrected for a global main field. Then, they are projected along this main field and modeled in terms of RHA functions. The software can exploit the quality indices provided with data and a procedure is applied to mitigate the effect of outliers. Maps for the scalar and the vector anomaly fields are readily built on an interpolated regular grid leveled at a constant altitude. In order to assess the modeling and the inversion procedures, analyses are carried out with synthetic measurements derived from a high-resolution global lithospheric magnetic field model estimated on the French aeromagnetic grid and at UAV locations with some added nonrandom noise. These analyses indicate that RHA is efficient for first-order and direct mapping of the crustal magnetic field structures measured by UAVs but that it could be applied on airborne and marine magnetic intensity data covering dense and large geographical extensions.

Funder

CNES

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3