Effects of Thermokarst Lake Drainage on Localized Vegetation Greening in the Yamal–Gydan Tundra Ecoregion

Author:

Liu Aobo12ORCID,Chen Yating12,Cheng Xiao34ORCID

Affiliation:

1. College of Geography and Environment, Shandong Normal University, Jinan 250014, China

2. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China

3. Key Laboratory of Comprehensive Observation of Polar Environment (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China

4. School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

Abstract

As the climate warms, the Arctic permafrost region has undergone widespread vegetation changes, exhibiting overall greening trends but with spatial heterogeneity. This study investigates an underexamined mechanism driving heterogeneous greening patterns, thermokarst lake drainage, which creates drained lake basins (DLBs) that represent localized greening hotspots. Focusing on the Yamal–Gydan region in Siberia, we detect 2712 lakes that have drained during the period of 2000–2020, using Landsat time-series imagery and an automated change detection algorithm. Vegetation changes in the DLBs and the entire study area were quantified through NDVI trend analysis. Additionally, a machine learning model was employed to correlate NDVI trajectories in the DLBs with environmental drivers. We find that DLBs provide ideal conditions for plant colonization, with greenness levels reaching or exceeding those of the surrounding vegetation within about five years. The greening trend in DLBs is 8.4 times the regional average, thus contributing disproportionately despite their small area share. Number of years since lake drainage, annual soil temperature, latitude, air temperature trends, and summer precipitation emerged as key factors influencing DLB greening. Our study highlights lake drainage and subsequent vegetation growth as an important fine-scale process augmenting regional greening signals. Quantifying these dynamics is critical for assessing climate impacts on regional vegetation change.

Funder

National Natural Science Foundation of China

National Outstanding Youth Foundation of China

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3