Deep Learning Investigation of Mercury’s Explosive Volcanism

Author:

Leon-Dasi Mireia1ORCID,Besse Sebastien2ORCID,Doressoundiram Alain1ORCID

Affiliation:

1. LESIA, Observatoire de Paris, Université PSL, CNRS, 5 Place Jules Janssen, 92195 Meudon, France

2. European Space Agency (ESA), European Space Astronomy Centre (ESAC), Camino Bajo del Castillo s/n, Villanueva de la Cañada, 28692 Madrid, Spain

Abstract

The remnants of explosive volcanism on Mercury have been observed in the form of vents and pyroclastic deposits, termed faculae, using data from the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) onboard the Mercury surface, space environment, geochemistry, and ranging (MESSENGER) spacecraft. Although these features present a wide variety of sizes, shapes, and spectral properties, the large number of observations and the lack of high-resolution hyperspectral images complicates their detailed characterisation. We investigate the application of unsupervised deep learning to explore the diversity and constrain the extent of the Hermean pyroclastic deposits. We use a three-dimensional convolutional autoencoder (3DCAE) to extract the spectral and spatial attributes that characterise these features and to create cluster maps constructing a unique framework to compare different deposits. From the cluster maps we define the boundaries of 55 irregular deposits covering 110 vents and compare the results with previous radius and surface estimates. We find that the network is capable of extracting spatial information such as the border of the faculae, and spectral information to altogether highlight the pyroclastic deposits from the background terrain. Overall, we find the 3DCAE an effective technique to analyse sparse observations in planetary sciences.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3