Driving Mechanisms of Spatiotemporal Heterogeneity of Land Use Conflicts and Simulation under Multiple Scenarios in Dongting Lake Area

Author:

An Xuexian123,Zhang Meng123,Zang Zhuo123

Affiliation:

1. Research Center of Forestry Remote Sensing and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. Hunan Provincial Key Laboratory of Forestry Remote Sensing Based Big Data and Ecological Security, Changsha 410004, China

3. Key Laboratory of National Forestry and Grassland Administration on Forest Resources Management and Monitoring in Southern China, Changsha 410004, China

Abstract

As an important ecological hinterland in Hunan Province, the Dongting Lake area has an irreplaceable role in regional socioeconomic development. However, owing to rapid environmental changes and complex land use relationships, land use/land cover (LULC) changes are actively occurring in the region. Therefore, assessment of the current LULC status and the future development trend for sustainable economic development is of considerable importance. In this study, the driving mechanisms of spatiotemporal evolution for land use conflicts (LUCF) in Dongting Lake from 2000 to 2020 were analyzed by constructing a LUCF model. Additionally, a new model, EnKF-PLUS, which couples ensemble Kalman filtering (EnKF) with patch-generating land use simulation (PLUS), was developed to predict the LULC changes and LUCF in 2030 under different scenarios. The results provide three insights. First, during the period of 2000–2020, high LUCF values were concentrated in highly urbanized and densely populated areas, whereas low LUCF values were centered in hilly regions. Secondly, the impacts of static factors (topographical factors) and dynamic factors (population, GDP, and climate factors) on changes in LUCF were regionally differentiated. Thirdly, our results indicate that the implementation of land use strategies of cropland conservation and ecological conservation can effectively mitigate the degree of LUCF changes in the region and contribute to the promotion of the rational allocation of land resources.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

Education Department of Hunan Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3