Energy-Constrained LOCC-Assisted Quantum Capacity of the Bosonic Dephasing Channel

Author:

Arqand Amir1ORCID,Memarzadeh Laleh1ORCID,Mancini Stefano2ORCID

Affiliation:

1. Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran

2. School of Science & Technology, University of Camerino, I-62032 Camerino, Italy

Abstract

We study the LOCC-assisted quantum capacity of a bosonic dephasing channel with energy constraint on the input states. We start our analysis by focusing on the energy-constrained squashed entanglement of the channel, which is an upper bound for the energy-constrained LOCC-assisted quantum capacity. As computing energy-constrained squashed entanglement of the channel is challenging due to a double optimization (over the set of density matrices and the isometric extensions of a squashing channel), we first derive an upper bound for it, and then, we discuss how tight that bound is for the energy-constrained LOCC-assisted quantum capacity of the bosonic dephasing channel. In doling so, we prove that the optimal input state is diagonal in the Fock basis. Then, we analyze two explicit examples of squashing channels through which we derive explicit upper and lower bounds for the energy-constrained LOCC-assisted quantum capacity of the bosonic dephasing channel in terms of its quantum capacity with different noise parameters. As the difference between upper and lower bounds becomes smaller by increasing the dephasing parameter, the bounds become tighter.

Funder

Sharif University of Technology, Office of the Vice President for Research

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference47 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3