Experimental and Informational Modeling Study on Flexural Strength of Eco-Friendly Concrete Incorporating Coal Waste

Author:

Dabbaghi FarshadORCID,Rashidi Maria,Nehdi Moncef L.ORCID,Sadeghi Hamzeh,Karimaei Mahmood,Rasekh Haleh,Qaderi Farhad

Abstract

Construction activities have been a primary cause for depleting natural resources and are associated with stern environmental impact. Developing concrete mixture designs that meet project specifications is time-consuming, costly, and requires many trial batches and destructive tests that lead to material wastage. Computational intelligence can offer an eco-friendly alternative with superior accuracy and performance. In this study, coal waste was used as a recycled additive in concrete. The flexural strength of a large number of mixture designs was evaluated to create an experimental database. A hybrid artificial neural network (ANN) coupled with response surface methodology (RSM) was trained and employed to predict the flexural strength of coal waste-treated concrete. In this process, four influential parameters including the cement content, water-to-cement ratio, volume of gravel, and coal waste replacement level were specified as independent input variables. The results show that concrete incorporating 3% recycled coal waste could be a competitive and eco-efficient alternative in construction activities while attaining a superior flexural strength of 6.7 MPa. The RSM-modified ANN achieved superior predictive accuracy with an RMSE of 0.875. Based on the experimental results and model predictions, estimating the flexural strength of concrete incorporating waste coal using the RSM-modified ANN model yielded superior accuracy and can be used in engineering practice to save the effort, cost, and material wastage associated with trial batches and destructive laboratory testing while producing mixtures with enhanced flexural strength.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3