Comparative Analysis of Anomaly Detection Approaches in Firewall Logs: Integrating Light-Weight Synthesis of Security Logs and Artificially Generated Attack Detection

Author:

Komadina Adrian1ORCID,Kovačević Ivan1ORCID,Štengl Bruno1ORCID,Groš Stjepan1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Abstract

Detecting anomalies in large networks is a major challenge. Nowadays, many studies rely on machine learning techniques to solve this problem. However, much of this research depends on synthetic or limited datasets and tends to use specialized machine learning methods to achieve good detection results. This study focuses on analyzing firewall logs from a large industrial control network and presents a novel method for generating anomalies that simulate real attacker actions within the network without the need for a dedicated testbed or installed security controls. To demonstrate that the proposed method is feasible and that the constructed logs behave as one would expect real-world logs to behave, different supervised and unsupervised learning models were compared using different feature subsets, feature construction methods, scaling methods, and aggregation levels. The experimental results show that unsupervised learning methods have difficulty in detecting the injected anomalies, suggesting that they can be seamlessly integrated into existing firewall logs. Conversely, the use of supervised learning methods showed significantly better performance compared to unsupervised approaches and a better suitability for use in real systems.

Funder

European Union’s European Regional Development Fund, Operational Programme Competitiveness

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3