Assessing the Effect of Data Quality on Distance Estimation in Smartphone-Based Outdoor 6MWT

Author:

Caramaschi Sara1ORCID,Olsson Carl Magnus1ORCID,Orchard Elizabeth2ORCID,Molloy Jackson2ORCID,Salvi Dario1ORCID

Affiliation:

1. Department of Computer Science and Media Technology, Internet of Things and People Research Center, Malmö University, 21119 Malmö, Sweden

2. Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7JX, UK

Abstract

As a result of technological advancements, functional capacity assessments, such as the 6-minute walk test, can be performed remotely, at home and in the community. Current studies, however, tend to overlook the crucial aspect of data quality, often limiting their focus to idealised scenarios. Challenging conditions may arise when performing a test given the risk of collecting poor-quality GNSS signal, which can undermine the reliability of the results. This work shows the impact of applying filtering rules to avoid noisy samples in common algorithms that compute the walked distance from positioning data. Then, based on signal features, we assess the reliability of the distance estimation using logistic regression from the following two perspectives: error-based analysis, which relates to the estimated distance error, and user-based analysis, which distinguishes conventional from unconventional tests based on users’ previous annotations. We highlight the impact of features associated with walked path irregularity and direction changes to establish data quality. We evaluate features within a binary classification task and reach an F1-score of 0.93 and an area under the curve of 0.97 for the user-based classification. Identifying unreliable tests is helpful to clinicians, who receive the recorded test results accompanied by quality assessments, and to patients, who can be given the opportunity to repeat tests classified as not following the instructions.

Funder

Swedish Knowledge Foundation

Internet of Things and People research center

Publisher

MDPI AG

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3